

BISHOP SCOTT BOYS' SCHOOL

- C Qurriculum
- Development &
- L Learning
- Objectives

BISHOP SCOTT BOYS' SCHOOL

STUDENT CURRICULUM MANUAL

Subject: MATHEMATICS Class: XII Academic Plan: 2025 -26

Month	Course Description	Learning Outcome	Activity	No. of Periods	Portion for PT & TERM Assessment
April	LESSON 1: RELATIONS AND FUNCTIONS	Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions	ACTIVITY 1, 2, 3, 4	15	
	LESSON 2: INVERSE TRIGONOMETRIC FUNCTIONS	Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.	ACTIVITY 5, 6, 7 & 8	15	
May	LESSON 3: MATRICES	Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operation on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition.	ACTIVITY 9 & 10	12	R
June	LESSON 3: MATRICES	Multiplication and scalar multiplication. On- commutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists;	ACTIVITY 11,12 & 13	13	

		(Here all matrices will have real ent	tries).		
Month	Course Description	Learning Outcome	Activity	No. of Periods	Portion for PT & TERM Assessment
July	LESSON 4: DETERMINANTS	• Determinant of a square matrix (up to 3 x 3 matrices), minors, cofactors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.	ACTIVITY 14, 15, 16 & 17	25	PT – 1 PORTION LESSON 1 - RELATIONS AND FUNCTIONS LESSON 2: INVERSE TRIGONOMETRIC FUNCTIONS LESSON 3: MATRICES
	LESSON 5: CONTINUITY AND DIFFERENTIABALITY	 Continuity and differentiability, chain rule, derivative of inverse trigonometric functions, like sin⁻¹ x, cos⁻¹ x and tan⁻¹ x, derivative of implicit functions. Concept of exponential and logarithmic functions. Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives. 	PSCO	20	R

		Applications of derivatives: rate of	ACTIVITY 18, 19, 20 & 21	30	
		''	ACTIVITI 16, 13, 20 & 21	30	
	LESSON 6: APPLICATION OF	change of quantities,			
	DERIVATIVES	increasing/decreasing functions,			
	2 2	maxima and minima (first			
		derivative test motivated			
		geometrically and second			
August		derivative test given as a provable			
August		too <mark>l). Simple pro</mark> blems (that			
		illustrate basic principles and			
		unde <mark>rstandin</mark> g of the subject as			
		well as real-life situations).			
		Integration as inverse process of			
		differentiat <mark>ion. I</mark> ntegration of a			
		variety of f <mark>unctio</mark> ns by substitution,			
		by partial f <mark>ractio</mark> ns and by parts,			
		Evaluation of simple integrals of the			
		following types and problems			
	LESSON 7: INTEGRALS	based on them.			
		$\int \frac{dx}{x^2 \pm a^2}, \int \frac{dx}{\sqrt{x^2 \pm a^2}}, \int \frac{dx}{\sqrt{a^2 - x^2}},$		//	
		$\int \frac{dx}{a^2 + bx + c}, \int \frac{dx}{\sqrt{a^2 + bx + c}}$			
		$\int \frac{px+q}{a^2+bx+c} dx,$			
	(C)	$\int a^2 + bx + c$			(R)
		$\int px + q$			
		$\int \frac{px+q}{\sqrt{a^2+bx+c}} dx,$			
		$\int \sqrt{a^2 \pm x^2} dx, \int \sqrt{x^2 - a^2} dx,$			
		$\int \sqrt{a^2 + bx + c} \ dx$			
		• Fundamental Theorem of			
		Calculus (without proof). Basic			

	properties of definite integrals and evaluation of definite integrals			
--	---	--	--	--

Month	Course Description	Learning Outcome	Activity	No. of Periods	Portion for PT & TERM Assessment
	LESSON 8: APPLICATION OF INTEGRALS	Applications in finding the area under simple curves, especially lines, circles/parabolas/ellipses (in standard form only)	ACTIVITY 22, 23 & 24	15	TERM - 1 PORTION LESSON 1 - RELATIONS AND FUNCTIONS LESSON 2: INVERSE TRIGONOMETRIC FUNCTIONS LESSON 3: MATRICES
September	LESSON 9: DIFFERENTIAL EQUATIONS	Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type: $\frac{dy}{dx} + py = q$, where p and q are fuctions of y or constants $\frac{dx}{dy} + px = q$ where p and q are fuctions of y or	PSCO	15	LESSON 4: DETERMINANTS LESSON 5: CONTINUITY AND DIFFERENTIABALITY LESSON 6: APPLICATION OF DERIVATIVES

	constants		

Month	Course Description	Learning Outcome	Activity	No. of Periods	Portion for PT & TERM Assessment
October	LESSON 10: VECTORS	 Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors. 	ACTIVITY 25, & 26	15	R

	LESSON 11: THREE DIMENSIONAL GEOMETRY	Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.		15	
Month	Course Description	Learning Outcome	Activity	No. of Periods	Portion for PT & TERM Assessment
November	LESSON 12: LINEAR PROGRAMMING	• Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three nontrivial constraints).	ACTIVITY 27	20	PT - 2 PORTION LESSON 7: INTEGRALS LESSON 8: APPLICATION OF INTEGRALS LESSON 9: DIFFERENTIAL EQUATIONS

	LESSON 13: PROBABILITY	Conditional probability, multiplication theorem on probability, independent	30	
		events, total probability,		
		Bayes' theorem, Random		
		variable and its probability		
		distribution, mean of random variable.		
December		REVISION		PRE-BOARD EXAM-I
Janwary		REVISION		PRE-BOARD EXAM-II

